L’INTELLIGENCE ARTIFICIELLE (IA) DANS LE MONDE NUMÉRIQUE

Qu’est-ce que l’Intelligence Artificielle (IA) ?

L’Intelligence Artificielle (IA) est une discipline scientifique inventée en 1955 par deux mathématiciens : John MacCathy et Marvin Lee Minsky. « L’IA est la science de programmer les ordinateurs pour qu’ils réalisent des tâches qui nécessitent de l’intelligence lorsqu’elles sont réalisées par des êtres humains. » Marvin Lee Minsky. On peut la définir ainsi : l’IA est un domaine de l’informatique dont le but est de recréer un équivalent technologique à l’intelligence humaine. L’IA n’est pas une technologie à part entière mais un ensemble de technologies et d’outils.

Méthodes

L’Intelligence Artificielle (IA, ou AI en anglais pour Artificial Intelligence) consiste à mettre en œuvre un certain nombre de techniques visant à permettre aux machines d’imiter une forme d’intelligence réelle, notamment s’adapter, apprendre, communiquer et interagir d’une manière riche et variée avec leur environnement. Le but n’est pas de remplacer les personnes par des machines mais d’ajouter aux capacités humaines une possibilité inégalée. La capacité de l’Intelligence Artificielle est d’analyser des quantités phénoménales de données et de déceler des tendances qui seraient autrement impossibles à détecter.

Types d’intelligence artificielle :

  • Intelligence Artificielle : automatisation de comportements intelligents.
  • Machine Learning : programmes informatiques permettant aux machines d’apprendre sans être spécifiquement programmés, afin d’évoluer elles-mêmes.
  • Deep Learning : apprentissage de modèle de données qui fonctionne comme un réseau de neurones.

Fonctionnement : vision et réalité

  L’IA a déjà profondément changé les habitudes des consommateurs et augmenté considérablement leur niveau d’attente. Elle couvre des domaines fonctionnels tels que les systèmes experts, la planification, l’optimisation ou la robotique. Les nouveaux domaines sont : le Machine Learning, le Natural Language Processing, la vision (capacité pour une machine à appréhender son environnement) ou le Speech (texte vers parole ou parole vers texte). À savoir que l’IA ne fait rien toute seule, ce qui diffère du Business Intelligence (BI) où l’on injectait les données et on réalisait les traitements des données.

Panorama des domaines de l’IA

cidimage001.png@01D8BBC4.FB0A73E0

IA = Transformer des données en actions intelligentes

Opportunités de l’IA

  • Le marché de l’IA représentera 11 milliards de dollars en 2024.
  • 54 % des Français pensent que l’IA est créatrice d’opportunités pour la vie quotidienne.

Pour satisfaire les enjeux métiers : quel objectif pour l’IA ?

L’IA n’est pas une intelligence de « naissance » mais elle le devient au fur et à mesure d’un processus d’apprentissage. L’entrainement de l’IA à travers les algorithmes d’apprentissage se fait avec un grand nombre de données.

Le pipeline d’un projet IA

Explications des grandes notions :

  1. La collecte des données, première phase d’un projet IA, consiste à identifier les sources de données et mettre en place les mécanismes d’acquisition permettant de les acheminer dans les infrastructures de stockage.
  2. La préparation est ensuite incontournable, tant les données collectées depuis diverses sources sont hétérogènes. Il faut ainsi nettoyer les données en supprimant les entrées non pertinentes, standardiser les formats, harmoniser les dates sur un même fuseau horaire, enrichir éventuellement les données avec les référentiels de l’entreprise…
  3. L’apprentissage peut alors commencer. Cette phase regroupe l’exploration manuelle et l’apprentissage automatisé. En effet, le Data Scientist explore « manuellement » les jeux de données afin de déterminer le meilleur algorithme pour répondre au problème posé. Une fois l’algorithme défini, l’apprentissage de la machine passe en mode « automatique ». Le modèle construit par cet apprentissage doit ensuite être validé.
  4. Une fois son modèle entrainé et validé, l’IA est enfin opérationnelle. Nous entrons donc dans la phase de résultats, l’IA remplit les objectifs fixés au départ.

La relation client et l’expérience client

L’IA représente un atout pour la relation client.

Le CRML’expérience utilisateurL’expérience client
Retour client personnaliséPersonnalisation du parcours clientPersonnalisation
Service client + réactif, rapide et spécifiqueExpérience achat « seamless »Expérience adaptive
+ InteractifOmicanalité
– Coûteux à termeChoix et pertinence
Différentiation

Hommes et machine : les deux intelligences sont complémentaires

L’IA possède d’excellentes capacités de calcul et de mémorisation, tandis qu’une bonne équipe de collaborateurs est mieux placée pour analyser et comprendre les émotions des clients. En somme, l’IA n’a pas pour vocation de remplacer l’homme, mais de l’épauler dans ses différentes tâches.

Par Emmanuel ESTEVES, Directeur R&D / S&R / Marketing chez Eurêka Solutions

À chaud

Datacenter et hébergement, un duo indispensable pour externaliser efficacement son SI

La digitalisation de l’ensemble des activités dans la sphère...

Pourquoi la gestion des parcs informatiques doit intégrer cybersécurité et sobriété numérique

Par Sébastien Reverdy, CEO de Bconnex 2025 marque un tournant...

6 points de conformité critiques à surveiller en communication client

Une erreur peut avoir de graves conséquences en matière...

Eureka CRM booste la relation client en intégrant l’IA pour le traitement des mails

Eureka Solutions, éditeur français de solutions de gestion, fait...

Phoner développe une ligne de reconditionnement de PC pour entreprises grâce à un investissement de 300 000 €

Phoner Business, entité professionnelle du groupe Phoner, franchit une...

Dernieres actualités

Telehouse annonce un nouveau data centre de 33 MW à Londres

Telehouse International Corporation of Europe annonce le lancement officiel...

Lancement de l’offre PushManager et ChromeOS

Dans un contexte où les impératifs de cybersécurité s’intensifient...

ITS Group invite à repenser le numérique au service d’un avenir durable

Comment construire et développer une filière numérique au service...

2501.ai et ITS Services déploient à grande échelle l’IA autonome pour les grands comptes

2501.ai, startup française pionnière dans l’orchestration d’agents autonomes pour...

Partenariat Squad – Versa : un duo pour des architectures réseau agiles et sécurisées

Squad, acteur français de référence en cybersécurité, annonce le...

Nutanix et Kubernetes : les deux offres ITS Integra bientôt certifiées SecNumCloud

L’opérateur français de Cloud et de Services Managés sécurisés...

Cybersécurité industrielle : Tyrex étend sa distribution avec Sphinx France

Tyrex, leader français des solutions de décontamination USB, étend...

Articles relatifs

Catégories